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Abstract. The application of the lattice Boltzmann model to simulating nonlinear propagative
acoustic waves is considered. The lattice Boltzmann model, and its application to the study of
nonlinear sound propagation, are discussed. Lattice Boltzmann simulations of the development of
a shock front are performed when a sound wave is emitted from a high-amplitude sinusoidal source.
For a number of parameters, representing different physical situations, the wave development is
compared with inviscid shock theory and with the solution of Burgers’ equation for a fully viscous
fluid. The simulations show good agreement with Burgers’ equation and with the inviscid theory
when propagation at high Reynolds number is considered. These results suggest that the lattice
Boltzmann model is a useful technique for studying a range of problems in nonlinear acoustics.

1. Introduction

The lattice Boltzmann model (LBM) has developed from the lattice gas automata (LGA)
model [1–3] which considers the evolution of a number of idealized fluid ‘particles’ which
move at unit speed on a regular grid subject to particle convection and simplified collision rules
which conserve the total fluid mass and momentum. The main application of the LGA has
been to fluid dynamics [4–6], however, sound propagation has also been considered. Frisch
et al [2] showed that the LGA incorporates sound wave propagation in the small-perturbation
limit. Numerical and theoretical evaluations of this LGA technique were performed by
Margolus et al [7], Chen et al [8] and Lavallée [9]. The idea was also employed by Chen
et al [10] who proposed a model to directly simulate a linear sound wave without treating
the sound wave in the small-perturbation limit. The LGA approach to emulating sound
waves was also developed by Sudo and Sparrow [11, 12] who considered sound propagation
in one and two dimensions and who further developed their model to include dissipation
[13]. These developments have led to a number of successful applications of the LGA to the
study of acoustical problems: Numrich et al [14] considered underwater sound propagation,
Stansell and Greated [15] simulated acoustic streaming in a pipe and Rothman [16] and
Huang et al [17] modelled seismic P -waves in homogeneous and inhomogeneous media,
respectively.

Despite the successful application of the LGA to many problems, both in fluid dynamics
and in acoustics, there are a number of difficulties associated with LGA simulations. Two
particular problems are the statistical noise associated with the simulation due to the small
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number of ‘particles’ being considered, and the viscosity being limited to relatively high values.
These both limited the range of application of the LGA, see, for example, [9, 15]. In an attempt
to overcome these drawbacks LGA has evolved in a number of stages and developed into the
LBM; details of the various steps can be found in, for example [18, 19]. The development of
the LBM was driven mainly by its use in fluid dynamics, since the LBM can be shown [18] to
mimic the incompressible Navier–Stokes and continuity equations. Recently, Buick et al [20]
have applied the technique to simulate linear sound waves when the pressure variations are
considered to be a small perturbation. Here we extend the scope of the simulations to consider
nonlinear waves and show that the LBM method and the incompressible approximation are
not limited to the linear regime. In all the simulations the amplitude of the density variation is
no greater than 1% of the ambient density so that the incompressible LBM equations can be
applied to a good approximation [20].

2. The lattice Boltzmann model

The LBM considered here evolves on a fixed hexagonal lattice. The sites on the lattice are
joined by unit vectors ei , where i = 1, 2, . . . , 6, while e0 is defined to be the null vector (see
figure 1). The simplified, discretized Boltzmann equation [21, 22] is given by

fi(r + ei , t + �t) − fi(r, t) = 
i(r, t) i = 0, 1, . . . , 6 (1)

where fi(r, t) are the distribution functions along the links ei at site r and time t and 
i(r, t)

is the collision operator. The left-hand side of equation (1) is the convection operator and
describes streaming of the distribution functions on the grid. This operator can be seen to be
linear in velocity space. The simplification of the Boltzmann equation occurs in the form of
the collision operator which is taken to be the Bhatnagar–Gross–Krook (BGK) approximation
[21, 23, 24]:


i(r, t) = − 1

τ
[fi(r, t) − f i(r, t)] (2)

where f i is the equilibrium distribution function and τ is the relaxation time. The form of

i , given in equation (2), represents a relaxation of the distribution towards its equilibrium
value and recovers the nonlinear form of the fluid, ensuring that the fully nonlinear Navier–
Stokes equation is satisfied. The equilibrium distribution functions depend only on the fluid
density, ρ, and velocity, u, at each site which can be calculated from the distribution functions
as

ρ =
∑
i

fi (3)

and

ρuα =
∑
i

fieiα (4)

where the Greek subscripts represent vector components and summation over repeated Greek
indices is assumed. Thus the collision process requires only local information to introduce
nonlinear effects into the simulation. Up to O(u2), we assume that the equilibrium distribution
function has the general form [25],

f i(r, t) =
{
ρ
(
A + Bei · u + C(ei · u)2 + Du2

)
i = 1, . . . , 6

ρ
(
A0 + D0u

2
)

i = 0.
(5)
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Figure 1. The hexagonal grid on which the simulations are
performed. The vectors e1, . . . , e6 are unit vectors along the
directions of the grid and e0 is the null vector.

This expansion up to second order in u ensures that the simulations have second-order accuracy,
however, the expansion is only valid for small Mach numbers M = u/cs , where cs is the speed
of sound in the medium. The constants A, A0, . . . , D0 can be found for the specific lattice
being used and the required properties of the fluid. Here we require that the collisions conserve
mass and momentum, that is

ρ =
∑
i

f i (6)

and

ρuα =
∑
i

f ieiα (7)

and that the fluid is isotropic and exhibits Galilean invariance. These requirements are fulfilled
by

A = 1
6 (1 − d0) A0 = d0 B = 1

3 C = 2
3 D = − 1

6 D0 = −1

(8)

where d0 is an arbitrary constant. This determines the equilibrium distribution function which
is applied here. In general, a different equilibrium distribution function can be used if different
fluid properties are required.

The macroscopic equations can be derived from the lattice Boltzmann equations by
performing a multiscaling Chapman–Enskog expansion [2] in the time and space derivatives
such that

∂

∂t
→ ε

∂

∂t1
+ ε2 ∂

∂t2
(9)

and

∂

∂x
→ ε

∂

∂x1
(10)

and the distribution function is expanded about the equilibrium value,

fi → f i + εf
(1)
i + ε2f

(2)
i (11)

where ε is the Knudsen number which must be small. If we further assume that the lattice
spacing, ei , and the time step, �t , are small parameters, and of the same order as ε, then
equation (1) can be Taylor expanded and combined with equation (2). Substituting the
expression for the equilibrium distribution functions, equation (5), and the Chapman–Enskog
expansions, equations (9)–(11), and retaining terms up to second order in ε we obtain [25]
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the continuity and Navier–Stokes equations for an incompressible, isothermal fluid in two
dimensions:

∂tρ + ∂αρuα = 0 (12)

and

∂tρuα + ∂βρuβuα = −∂α
[

1
2 (1 − d0)

]
ρ + ν∂β∂βρuα + ζ∂α∂βρuβ (13)

where

ν = 1
4 (τ − 1

2 ) (14)

and

ζ = (
τ − 1

2

)[
1
2 − 1

2 (1 − d0)
]

(15)

are the kinematic shear and bulk viscosities. The pressure term in equation (13) is p =
(1 − d0)ρ/2 which, for a perfect gas, gives the speed of sound as cs = [(1 − d0)/2]1/2.

In deriving equations (12) and (13) there have been a number of assumptions made which
restrict the application of the LBM. In the expansion of the equilibrium distribution function it is
assumed that the Mach number M = u/cs is small; in the Taylor expansion of the Boltzmann
equation the length and time scales of the simulation, ei and �t , are assumed to be small;
finally, the density variation must also be assumed to be small since the equations of motion
are for an incompressible fluid. Since we are dealing with a perfect gas where p is proportional
to ρ we can write, for a progressive plane wave,

ρ ′

ρ0
= u

cs
= M (16)

where ρ ′ is a density variation due to the sound wave and ρ0 is the ambient density. Here the
low-Mach-number approximation and the incompressibility condition reduce to one constraint.
The further constraint that ei and�t are small requires that the macroscopic scales of the wave
are much larger than the microscopic scales of the grid, that is for a wave of wavelength λ and
period T

|ei | � λ and �t � T . (17)

This can always be achieved by selecting suitable values of λ and T .
It is worth noting that while the LBM satisfies the incompressible Navier–Stokes equation

the simulated fluid can experience density variations. These arise from the definition of ρ,
equation (3), which does not constrain ρ to be constant. In many fluid dynamics applications,
for example pressure-driven Poiseuille flow, this is seen as a disadvantage since so-called
compressibility errors are observed in a LBM simulation [26] and in many cases the pressure
gradient is approximated by a body force to remove this effect [27]. Here we use this feature
of the LBM in the limit that we consider only low Mach numbers.

3. Nonlinear acoustics

In this section we consider acoustic waves where the amplitude is large enough that nonlinear
motion is observed, but where the restriction that the Mach number, M = u/cs , is small, as is
required for the lattice Boltzmann model to be applicable. Under these conditions nonlinear
phenomena are locally small (of the order of M), however, the effects are cumulative and
increase with the distance of propagation and will, after a sufficient propagation distance,
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significantly distort the wave. To consider this we start from the Navier–Stokes and continuity
equations and the equation of state of the fluid (see, for example, [28–30]):

∂tρ + ∂αρuα = 0 (18)

ρ
[
∂tuα + uα∂βuβ

] = −∂αp + ρν∂β∂βuα + ρ

[
ζ + ν

(
1 − 2

D

)]
∂α∂βuβ (19)

and

p′ = c2
s ρ

′ +
(γ − 1)c2

s

2ρ0
ρ ′2 − χ

(
1

cv
− 1

cp

)
∂αuα (20)

where D is the number of dimensions, χ is the coefficient of thermal conductivity, cp and cv
are the specific heats at constant pressure and volume, γ = cp/cv and the pressure and density
(p and ρ) are, respectively, defined as the sum of the ambient (p0 and ρ0) and the perturbation
(p′ and ρ ′). The kinematic shear and bulk viscosities and the speed of sound are ν, ζ and cs ,
respectively, as before. Substituting the equation of state, equation (20), into the continuity
and Navier–Stokes equations (18) and (19), expressing the pressure and the density as the sum
of the ambient value and the perturbation, and neglecting the term ρ ′uβ∂βuα since it is O(M3)

we obtain

∂ρ ′

∂t
+ (ρ0 + ρ ′)

∂u

∂x
+ u

∂ρ ′

∂x
= 0 (21)

and

(ρ0 + ρ ′)
∂u

∂t
+ ρ0u

∂u

∂x
= −c2

s

∂ρ ′

∂x
− 2εc2

s ρ
′

ρ0

∂ρ ′

∂x
+ ρ0b

∂2u

∂x2
(22)

where b = ζ + (1 + 1 − 2/D)ν + χ(1/cv − 1/cp)/ρ0, ε = (γ + 1)/2 and we have used
one-dimensional notation since we are interested in the propagation of plane waves.

To proceed further it is not possible to consider a classical perturbation expansion of
equations (21) and (22) using linear wave theory as a first-order approximation. This is because
linear theory does not give a satisfactory first approximation, since no matter how small the
initial amplitude the long-term behaviour will be nonlinear in the absence of dissipation. It is
therefore necessary to use a multiple-scale method where x, t and X = Mx are considered to
be independent variables and ∂/∂x → ∂/∂x +M∂/∂X. This allows a good description of the
wave up to distances x = O(1/M). Following this approach and introducing τ = t − x/cs ,
equations (21) and (22) can be shown to satisfy Burgers’ equation [28]

∂u

∂x
− ε

c2
s

u
∂u

∂τ
= b

2c3
s

∂2u

∂τ 2
. (23)

Finally, it is convenient to change to dimensionless variables q = u/U , σ = εMkx and
θ = ωτ where U , ω and k are the initial velocity, angular frequency and wavenumber of the
source and M has been redefined here as M = U/cs . In these coordinates Burgers’ equation
is

∂q

∂σ
− q

∂q

∂θ
= κ

∂2q

∂θ2
(24)

where

κ = 1

2ε

1

Re

1

M
(25)
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and Re is the acoustical Reynolds number given by

Re = cs

bk
. (26)

The dimensionless propagation parameter, σ , describes the development of the shock wave
for 0 � σ � 1. The shock formation distance for a sinusoidal sound wave with amplitude
unity is σ = 1. That is, σ = 1 determines the distance at which a sinusoidal wave in an inviscid
fluid is transformed into a discontinuous wave of sawtooth shape. In a viscous fluid the wave is
transformed into an almost sawtooth shape, however, the action of viscous damping prevents
a total discontinuity forming. Note that the multiple-scale method used in the derivation of
Burgers’ equation is valid for distances up to x = O(1/M), that is, distances of the order of
the shock formation distance σ = 1.

3.1. Solution of Burgers’ equation

Here we consider the solution of Burgers’ equation for two cases: firstly, the analytic solution
for the special case for an inviscid medium where κ = 0, and, secondly, the numerical solution
of the full Burgers’ equation.

3.1.1. Inviscid fluid. We wish to solve the inviscid Burgers’ equation

∂q

∂σ
− q

∂q

∂θ
= 0 (27)

for the initial condition

q(σ, θ)
∣∣
σ=0 = f (θ). (28)

Following Crighton et al [29] we consider a curve in the (σ, θ)-plane for which θ is some
definite function of σ . On this curve we have

dq

dσ
= ∂q

∂σ
+

(
dθ

dσ

)
∂q

∂θ
= 0 if

dθ

dσ
= −q. (29)

Let / be one such curve where q is constant, then / is the straight line θ = −qσ + φ. The
point where this line cuts the θ -axis occurs when σ = 0, which gives φ = θ or

q = f (φ) (30)

where φ is defined through

φ = θ + qσ. (31)

Now, equation (27) preserves the parity and periodicity of the initial function. Thus, if we
now consider the special case of a sinusoidal source, f (θ) = sin θ , the solution of equation (27)
must have the form

q(σ, θ) =
∞∑
n=1

an(σ ) sin(nθ) (32)

where

an(σ ) = 2

π

∫ π

0
q(σ, θ) sin nθ dθ. (33)
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Substituting in equations (30) and (31) and changing the variable of integration from θ to φ,
equation (33) can be expressed as

an(σ ) = 2

nσ
Jn(nσ) (34)

where Jn is the Bessel function of order n. This gives the Fubini–Ghiron solution for the
development of a shock in an inviscid fluid

q =
∞∑
n=1

2

nσ
Jn(nσ) sin(nθ). (35)

This solution holds for 0 � σ � 1 since for σ > 1 the θ–φ relationship in not one-to-one and
the change of integration variable in not possible.

3.1.2. Numerical solution. We now turn our attention to the numerical solution of
equation (24) [31]. To do this we consider a travelling wave of the form

q =
∞∑
n=1

an(σ ) sin nθ. (36)

Considering first the nonlinear term:

q
∂q

∂θ
=
[ ∞∑
n=1

an(σ ) sin nθ

][ ∞∑
m=1

mbm(σ) cosmθ

]
. (37)

Collecting together terms with the same frequency this can be rewritten as

q
∂q

∂θ
= 1

2

∞∑
m=1

[
m sinmθ

(
m−1∑
p=1

1
2 (apam−p) −

∞∑
p=m+1

ap−map

)]
. (38)

Calculating the other derivatives the solution of Burgers’ equation reduces to solving the
following set of first-order partial differential equations:

∂an

∂σ
= n

(
n−1∑
p=1

1
2 (apan−p) −

∞∑
p=n+1

ap−nap

)
− κn2an (39)

where a1|σ=0 = 1 and an|σ=0 = 0 for n � 2. This can be solved by truncating the series to
N harmonics and solving the N equations using a variable-order variable-step Adams method
[32, 33]. The solutions presented here were truncated at N = 20, although only the first six
harmonics are plotted.

4. Numerical simulations

The development of the shock wave was simulated using the lattice Boltzmann model described
in section 2. This was done using a grid consisting of λ sites in the x-direction and m sites
in the y-direction, where λ is the wavelength of the sound wave being simulated and m is
an arbitrary number. Periodic boundary conditions were applied at each of the grid edges.
Since plane waves are being simulated the value of the pressure and the velocity, and hence
the distribution functions, fi , are the same on each column (x constant) and so the value of m
is totally arbitrary. Here m = 4 was used. A sinusoidal source was mimicked by initializing
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the grid with a sinusoidal pressure (density) and velocity variation. That is, the velocity and
density were specified according to

ρ = ρ0 + a sin

(
2πx

λ

)
(40)

and

u = acs

ρ0
sin

(
2πx

λ

)
. (41)

The initial values of fi at t = 0 were then calculated by substituting these values into
equation (5). The constant d0 in equation (8) can, in general, be varied to change the ratio of the
shear and bulk viscosities; here is was fixed at d0 = 1

2 . The value of the amplitude parameter a
in equations (40) and (41) and the ambient density ρ0 determine the Mach number: M = a/ρ0.
Here we choose a = 0.1 and ρ0 = 10 giving M = 0.01 which satisfies the lattice Boltzmann
constraint thatM � 1. It is usual to express the intensity of a sound wave in terms of the sound
pressure level rather than the Mach number. Comparing the simulations to a sound wave in air
at atmospheric pressure, M = 0.01 corresponds to a pressure variation of 1 × 103 Pa which
gives a sound pressure level [20] of 20 log(1×103/2×10−5) = 154 dB SPL. The simulation is
then allowed to evolve and the density and velocity measured at position x = λ/2 giving a time
series record of the wave. The lattice exhibits periodicity and hence all other positions, for a
particular phase, are equivalent. This differs from a typical experimental set-up and the theory
in section 3 where a source is positioned in a medium and measurements are made at different
positions giving a spatial record of the sound wave. Complete information for a particular phase
can be obtained by measurements at different distances from the source at a single arbitrary
time. The constant dispersion relation of our simulation ensures complete spacetime ergodicity
and these two situations become completely equivalent. That is to say, measurements at time
t and t + δt from our simulations can equally be thought of as measurements at positions x and
x + δx where x = cst and δx = csδt .

The LBM described in section 2 has an equation of state p = c2
s ρ which corresponds

to a fluid with γ = 1, with no thermal energy dissipation. This arises from the term
∂α(1 − d0)ρ/2 in equation (13) being equated to the term ∂αp in the Navier–Stokes equation,
with cs = [(1 − d0)/2]1/2. We note that a different choice for the equilibrium distribution
function, equation (5), could change the equation of state of the simulated fluid [34]. The
dissipative term b is now expressed as b = ν + ζ (since we are considering two dimensions)
and the constant ε = 1. Thermal dissipation effects can, however, be simulated using an
effective viscosity which incorporates both viscous and thermal losses. This was not done
here.

5. Simulation results

A typical set of results is shown in figure 2 which shows the variation in the normalized pressure
with time during the formation of the shock wave. Initially the variation is approximately
sinusoidal, however, this can be see to change as the wave evolves. This distortion of the
initial sine wave can be seen more clearly in figure 3 which shows a stack profile representing
the normalized pressure of the wave plotted against the wave phase at different times. The
change in the form of the oscillation can be clearly seen in figure 3.

In order to compare these results with the theoretical analysis we need to look at the
growth and decay of the fundamental and higher harmonics within the waves. This was done
by dividing the results into segments with length 3T in such a way that segment l contains
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Figure 2. The measured pressure variation as a function
of time for the first 16 periods of oscillation. This
corresponds to the development of the shock front.

Figure 3. A stacked profile of the pressure variation as
a function of the wave phase at selected times during the
development of the shock front. The distortion of the
initial sinusoidal variation to the ‘N’-shaped shock wave
is clearly visible.

Figure 4. A typical example of the Fourier transform
of a three-wavelength segment of the signal at selected
times during the evolution of the shock wave. (a)
represents the initial segment at x = 3λ/2 and
shows most of the wave energy concentrated in the
fundamental harmonic with the amplitude of the
second and third harmonic starting to increase. (b)
and (c) show the spectrum at later times and show the
increasing prominence of the higher harmonics and the
decrease of the fundamental harmonic as σ increases.

(l − 1)T + 1 < t < (l + 2)T . Each of these segments was then Fourier transformed and
the resulting spectrum considered to represent the wave at x = (l + 1

2 )λ. Typical results of
such a procedure are shown in figure 4 which shows the change in the spectrum at selected
distances from the source. As expected the amplitude of the higher harmonics is seen to
increase with propagation distance, this is due to energy being transferred to these harmonics
from the fundamental harmonic which is seen to decrease in amplitude. The change in the
magnitude of each frequency component was extracted from the Fourier transform for waves
with three different Reynolds numbers, Re 
 1600, 1100 and 160. This was achieved using
a fixed wavelength λ = 500 and varying the fluid viscosity using τ = 0.55, 0.57 and 0.95,
respectively. In each case the Mach number was fixed at M = 0.01. These are shown in
figure 5 for the first six harmonics along with the numerical solution of Burgers’ equation and
the inviscid Fubini–Ghiron solution for comparison. In general, the simulation results show
excellent agreement with the numerical solution of Burgers’ equation. There are, however,
some regions where there is a small deviation. One source of error in the analysis is that we
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Figure 5. The variation in the relative amplitude of the first six harmonics for an initially
sinusoidal nonlinear wave during the development of the shock front for three different Reynolds
numbers, the Mach number is M = 0.01. In each case the numerical solution of Burgers’
equation (24) is represented by a full curve. Also shown for comparison is the Fubini–Ghiron
solution, equation (35), for each of the harmonics. (a) First harmonic; (b) second harmonic; (c)
third harmonic; (d) fourth harmonic; (e) fifth harmonic and (f ) sixth harmonic.

are performing the Fourier transform over three wavelengths during which there is a change in
the amplitudes of the harmonics, both due to energy transfer between the harmonics and due to
viscous damping. Therefore, the Fourier transform will not only contain peaks at the frequency
of the harmonics, but also contributions due to the change in these amplitudes over the sample.
This can be seen in figures 4(a) and (b) where the values between n = 1 and 2 and between
n = 2 and 3 are not zero. These figures represent the early stages in the development of the
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shock wave where there is the largest change in the amplitude of the harmonics. At later times,
see figure 4(c), the change in the harmonic amplitudes is smaller and so is the value of the
Fourier transform between the harmonics. In general, these additional contributions are small
and, combined with numerical error, account for the small deviations observed, particularly
when the harmonic amplitude is small; see, for example, figures 5(d)–(f ) at small σ . As
expected the results approach the inviscid Fubini–Ghiron solution as the Reynolds number
increases.

6. Conclusion

The use of a BGK lattice Boltzmann model for simulating nonlinear propagative acoustic waves
has been considered. It has been seen that a range of problems in nonlinear acoustics are within
the dynamic range of the lattice Boltzmann model and the application of the technique has been
demonstrated. This was done by simulating the development of a shock front from an initially
sinusoidal nonlinear wave. The results of the simulation agreed well with theory, suggesting
that the lattice Boltzmann model is indeed a useful approach to simulating nonlinear acoustical
phenomena.

The simulations presented here have been limited to considering progressive waves in
an unbound media. This is not a fundamental restriction of the technique which should be
equally applicable to studying standing waves and propagation in a pipe where the action of the
walls significantly influences the acoustics; indeed, the ability of the LBM to model complex
boundary situations is well established. An investigation of this and the steady-state acoustic
streaming flows set-up by the attenuation of a sound field in the boundary layer is currently in
progress.
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